Abstract

The Q-switching (QS) phenomenon in lasers refers to the production of high intensity pulses by means of a saturable absorber (passive method) or by modifying the reflectivity or losses of the intracavity optics or mirrors (active method). Theoretically, the QS is studied through the laser rate equations which are useful to predict, at least qualitatively and roughly, the fundamental aspects of laser dynamics. However, specific details such as the spatial distribution of the intensity of the laser emission escape the simplicity of the rate equations. In this work we present a two dimensional cellular automata model (CA) to study the QS phenomenology for both the passive and the active method. To simulate the passive method we consider a spatial distribution of cells whose physical properties emulate those of the saturable adsorbers. And for the active method we introduce a periodic modulation of the lifetime of the photons inside the cavity. We have done numerous numerical simulations that show that despite the simplicity of the evolution rules, the AC model is capable of obtaining the main dynamics of operation of the laser by modifying the system parameters such as the pumping probability and the properties of the absorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.