Abstract

A cell-free protein translocation system derived exclusively from a Gram-positive bacterium is described here for the first time. Highly efficient in vitro synthesis of plasmid encoded preprolipase of Staphylococcus hyicus is accomplished by coupled transcription/translation using either a cytosolic extract of S. carnosus alone or in combination with T7-RNA-polymerase. Addition of inside-out cytoplasmic membrane vesicles of S. carnosus leads to the partial conversion (processing) of preprolipase to prolipase. In addition, as shown in a protease protection assay, a significant part of preprolipase plus prolipase is translocated in vitro into the lumen of the vesicles. Translocation of preprolipase into the membrane vesicles requires the proton-motive force and the S. carnosus SecA protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.