Abstract

In this paper, we present a novel cell-centered indirect Arbitrary-Lagrangian-Eulerian (ALE) discontinuous Galerkin (DG) scheme on moving unstructured triangular meshes with mesh topological adaptability, aiming to deal with the strong distortions and large deformation flow problems. The scheme combines the explicit time marching Lagrangian DG methodology with the adaptive mesh topology optimization technique. The scheme consists of the following three steps. Firstly, we utilize the Runge-Kutta DG method to solve the compressible Euler equation in Lagrangian framework, and employ a nodal solver to obtain the nodal velocity and numerical fluxes across element boundaries. The physical variable and nodal position are updated in this step. Secondly, the adaptive mesh topology optimization technique, which includes the mesh refinement, edge collapse operation and mesh regularization, is implemented to eliminate the highly distorted elements and improve the mesh quality. Thirdly, the conservative remapping algorithm is employed, which can maintain the conservative interpolation of the Lagrangian solution onto the remeshed grid. The present indirect ALE DG scheme can ensure the high quality of the mesh by optimizing the topology connectivity, so that the present scheme can successfully simulate complex vortical flow problems for a sufficient simulation time. Due to the inherent Lagrangian nature, the present scheme can naturally track the multi-material flow interface, rather than using algorithms with interface reconstruction or diffuse interfaces. The scheme is validated with several benchmark flow problems. It is demonstrated that the present indirect ALE DG scheme with topological adaptability can accurately simulate flow problems with large fluid deformations and distortions. It can achieve remarkable improvements compared with the conventional Lagrangian DG method with fixed topological connectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.