Abstract

Bracts are leaf-like structures in flowering plants. They serve multiple functions such as attracting pollinators, aiding tolerance of abiotic stressors, and conducting photosynthesis. While previous studies extensively examine bract function, the molecular mechanisms underlying bract growth remain unknown. Here, the map-based isolation and characterization of a crucial factor responsible for cotton bract development, identified from a mutant known as frego bract (fg), discovered by Frego in 1945 are presented. This gene, named Ghfg, encodes a CC-NB-ARC-LRR (CNL) family protein. Through analysis of bract form in plants with virus-induced gene silencing (VIGS) and transgenic plants, this gene is confirmed to be the causal gene under the fg locus. Furthermore, high-resolution single-cell transcriptomic landscape of cotton bracts is generated, which reveals differences related to auxin in proliferating cells from TM-1 and T582; differences in auxin distribution and ROS accumulation are experimentally verified. These findings suggest that GhFG is in a self-activated state in the fg mutant, and its activity leads to ROS accumulation that impacts auxin distribution and transport. Finally, an island cotton variety with the frego bract trait is developed, demonstrating a novel solution for reducing the high impurity rate caused by bract remnants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.