Abstract

Decision to explore new options with uncertain outcomes or exploit familiar options with known outcomes is a fundamental challenge that the brain faces in almost all real-life decisions. Previous studies have shown that humans use two main explorative strategies to negotiate this explore-exploit tradeoff. Exploring for the sake of information is called directed exploration, and exploration driven by behavioral variability is known as random exploration. While previous neuroimaging studies have shown different neural correlates for these explorative strategies, including right frontopolar cortex (FPC), right dorsolateral prefrontal cortex (DLPFC), and dorsal anterior cingulate cortex (dACC), there is still a lack of causal evidence for most of these brain regions. Here, we focused on the right DLPFC, which was previously supported to be involved in exploration. Using the continuous theta burst stimulation (cTBS) and Horizon task on twenty-five healthy right-handed adult participants, we showed that inhibiting rDLPFC did not change directed exploration but selectively reduced random exploration, by increasing reward sensitivity over the average reward of each option. This suggests a causal role for rDLPFC in random exploration, and further supports dissociable neural implementations for these two explorative strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.