Abstract
AbstractHurricane Sandy (2012, referred to as Current Sandy) was among the most devastating storms to impact Connecticut’s overhead electric distribution network, resulting in over 15 000 outage locations that affected more than 500 000 customers. In this paper, the severity of tree-caused outages in Connecticut is estimated under future-climate Hurricane Sandy simulations, each exhibiting strengthened winds and heavier rain accumulation over the study area from large-scale thermodynamic changes in the atmosphere and track changes in the year ~2100 (referred to as Future Sandy). Three machine-learning models used five weather simulations and the ensemble mean of Current and Future Sandy, along with land-use and overhead utility infrastructure data, to predict the severity and spatial distribution of outages across the Eversource Energy service territory in Connecticut. To assess the influence of increased precipitation from Future Sandy, two approaches were compared: an outage model fit with a full set of variables accounting for both wind and precipitation, and a reduced set with only wind. Future Sandy displayed an outage increase of 42%–64% when using the ensemble of WRF simulations fit with three different outage prediction models. This study is a proof of concept for the assessment of increased outage risk resulting from potential changes in tropical cyclone intensity associated with late-century thermodynamic changes driven by the IPCC AR4 A2 emissions scenario.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have