Abstract

Introduction: Diabetic ketoacidosis (DKA) is a life-threatening complication of diabetes mellitus (DM). In general, DKA characterized by blood sugar over 250 mg/dL, anion-gap metabolic acidosis, and increased plasma or urine ketones. Approximately 2–3% of DKA patients can present with normal blood glucose levels (less than 250 mg/dl) which called euglycemic DKA. Some of the etiologies of euglycemic DKA include recent use of insulin, low caloric intake, alcoholism, chronic liver disease, and pregnancy. Very rarely, SGLT2 inhibitor use may be responsible for euglycemic DKA. Case Presentation: Here we present a case of 44 years old female with a past medical history of DM type 2 who presented with acute onset of nausea and vomiting. Initial laboratory findings were remarkable for anion gap metabolic acidosis with a blood glucose level of 201 mg/dl. The patient was on long-acting insulin along with Canagliflozin and Metformin therapy over years and reported being compliant with medications. She was treated with intravenous insulin therapy which resolved acidosis as well as symptoms. The patient was discharged with recommendations of discontinuation of Canagliflozin. Discussion: SGLT2 inhibitors are the novel class of oral antidiabetic drugs which widely used due to their favorable cardiovascular and renal outcomes independent of glycemic control. However, their side effects remain a concern. DKA is a rare but serious side effect of SGLT2 inhibitors with an incidence rate of 9.4% in type 1 DM and less than 0.2% in type 2 DM. Patients typically present with euglycemia or low-grade hyperglycemia which results in a diagnostic challenge for treating physicians. SGLT2 inhibitors increase urinary glucose excretion with a subsequent decrease in circulating insulin and an increase in glucagon, rendering a metabolic shift from glucose to fatty acid utilization. During times of intercurrent illness (decreased oral intake, sepsis) or metabolic stress (surgery), decreased carbohydrate intake coupled with the aforementioned changes will result in decreased insulin secretion and increased counter-regulatory hormones including adrenaline and cortisol, promoting lipolysis, fatty acid oxidation, and ketone production by the liver which ultimately leading to euglycemic DKA. Conclusion: SGLT2 inhibitors induced euglycemic DKA treatment is identical to classic DKA with consideration of the lack of hyperglycemia. Appropriate patient counseling to ensure safe SGLT2 inhibitor therapy is crucial, including appropriate holding parameters during concomitant volume-depleting illnesses and decreased oral intake. Timely diagnosis of euglycemic DKA, and recognitions of other rare but lethal side effects to decrease overall morbidity and mortality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call