Abstract
Coflow scheduling improves data-intensive application performance by improving their networking performance. State-of-the-art online coflow schedulers in essence approximate the classic Shortest-Job-First (SJF) scheduling by learning the coflow <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">size</i> online. In particular, they use multiple priority queues to simultaneously accomplish two goals: to sieve long coflows from short coflows, and to schedule short coflows with high priorities. Such a mechanism pays high overhead in learning the coflow size: moving a large coflow across the queues delays small and other large coflows, and moving similar-sized coflows across the queues results in inadvertent round-robin scheduling. We propose Philae, a new online coflow scheduler that exploits the spatial dimension of coflows, <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">i.e.,</i> a coflow has many flows, to drastically reduce the overhead of coflow size <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">learning</i> . Philae pre-schedules sampled flows of each coflow and uses their sizes to estimate the average flow size of the coflow. It then resorts to Shortest Coflow First, where the notion of shortest is determined using the learned coflow sizes and coflow contention. We show that the sampling-based learning is robust to flow size skew and has the added benefit of much improved scalability from reduced coordinator-local agent interactions. Our evaluation using an Azure testbed, a publicly available production cluster trace from Facebook shows that compared to the prior art Aalo, Philae reduces the coflow completion time (CCT) in average (P90) cases by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.50\times $ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$8.00\times $ </tex-math></inline-formula> ) on a 150-node testbed and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2.72\times $ </tex-math></inline-formula> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$9.78\times $ </tex-math></inline-formula> ) on a 900-node testbed. Evaluation using additional traces further demonstrates Philae’s robustness to flow size skew.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.