Abstract

Underwater images usually exhibit severe color cast, hazy appearance, and/or dark regions because of the complex lighting absorption and scattering in water. How to increase the quality of these degraded underwater images has emerged as a key issue for various underwater application tasks. Recent efforts have been made to deal with single type degradation, however, it is still challenging to deal with multiple degradations that usually coexist in an underwater image with a general network. The degradations in underwater images can be divided into medium-agnostic (hazy or low-light which also encountered in in-air images) and medium-specific (color distortion caused by the specific light attenuation property in water) ones. According to this observation, this article proposes a cascaded multimodule underwater image enhancement (UIE) framework to address the coexisted multiple degradations. In the proposed framework, an in-air image enhancement module and a novel proposed adaptive color channel compensation network (AC 3 Net) are cascaded, in which the former focuses primarily on solving medium-agnostic degradations and the latter is for handling the medium-specific degradation. This framework has good flexibility by cascading different types of in-air image enhancement networks with AC 3 Net to achieve various UIE. The effectiveness of the proposed framework has been extensively validated on various degraded underwater images as well as different underwater visual perception tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call