Abstract

Accurate segmentation of nuclei is an essential step in analysis of digital histology images for diagnostic and prognostic applications. Despite recent advances in automated frameworks for nuclei segmentation, this task is still challenging. Specifically, detecting small nuclei in large-scale histology images and delineating the border of touching nuclei accurately is a complicated task even for advanced deep neural networks. In this study, a cascaded deep learning framework is proposed to segment nuclei accurately in digitized microscopy images of histology slides. A U-Net based model with customized pixel-wised weighted loss function is adapted in the proposed framework, followed by a U-Net based model with VGG16 backbone and a soft Dice loss function. The model was pretrained on the Post-NAT-BRCA public dataset before training and independent evaluation on the MoNuSeg dataset. The cascaded model could outperform the other state-of-the-art models with an AJI of 0.72 and a F1-score of 0.83 on the MoNuSeg test set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.