Abstract

Two structures, a switched-capacitor (SC)-based boost converter and a two-level inverter, are connected in cascade. The dc multilevel voltage of the first stage becomes the input voltage of the classical inverter, resulting in a staircase waveform for the inverter output voltage. Such a multilevel waveform is close to a sinusoid; its harmonics content can be reduced by multiplying the stage number of the SC converter. The output low-pass filter, customary after a two-level inverter, becomes obsolete, resulting in a small size of the system, as the SC circuit can be miniaturized. Both stages are operated at a high switching frequency, resulting in a high-frequency inverter output, as required by some industrial applications. A Fourier analysis of the output waveform is performed. The design is optimized with reference to the nominal duty-cycle for obtaining the minimum total harmonic distortion. Simulations and experiments on two prototypes, one with a five-level output and one with a seven-level output, confirm the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.