Abstract

An equivalent bit conversion algorithm (EBCA) is proposed to eliminate the need for final carry propagation in the redundant binary (RB) to normal binary (NB) conversion step for RB multiplication. The multiplication process helps with the carry-free conversion step by eliminating certain combinations of RB product. When the EBCA is applied, conventional power-consuming carry-propagating adders are replaced by simple, minimum-sized carry-free converters, and the entire multiplication process can be made free of carry propagation from input to output. The method employed in this work reduces 40% of the total power and 30% of the total multiplication time in the final adder stage of traditional multipliers. The prototype fabricated in 0.35-/spl mu/m CMOS demonstrates that the 54 b/spl times/54 b multiplier consumes only 53.4 mW at 3.3 V for 74-MHz operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.