Abstract
Inspired by glycyrrhizin’s strong pharmacological activities and the directed self-assembly into hydrogels, we created a novel carrier-free, injectable hydrogel (CAR@glycygel) by combining glycyrrhizin with carvacrol (CAR), without any other chemical crosslinkers, to promote wound healing on bacteria-infected skin. CAR appeared to readily dissolve and load into CAR@glycygel. CAR@glycygel had a dense, porous, sponge structure and strong antioxidant characteristics. In vitro, it showed better antibacterial ability than free CAR. For methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Escherichia coli, the diameter of inhibition zone values of CAR@glycygel were 3.80 ± 0.04, 3.31 ± 0.20 and 3.12 ± 0.24 times greater, respectively, than those of free CAR. The MICs for CAR@glycygel was 156.25 μg/mL while it was 1250.00 μg/mL for free CAR to these three bacteria. Its antibacterial mechanism appeared to involve destruction of the integrity of the bacterial cell wall and biomembrane, leading to a leakage of AKP and inhibition of biofilm formation. In vivo, CAR@glycygel effectively stopped bleeding. When applied to skin wounds on rats infected with MRSA, CAR@glycygel had strong bactericidal activity and improved wound healing. The wound healing rates for CAR@glycygel were 49.59 ± 15.78 %, 93.02 ± 3.09 % and 99.02 ± 0.55 % on day 3, day 7, and day 11, respectively, which were much better than blank control and positive control groups. Mechanisms of CAR@glycygel accelerating wound healing involved facilitating epidermis remolding, promoting the growth of hair follicles, stimulating collagen deposition, mitigating inflammation, and promoting angiogenesis. Overall, CAR@glycygel showed great potential as wound dressing for infected skin wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.