Abstract

During wound healing, bacterial infection is one of the main limiting factors for the desired efficiency. Wound dressing-mediated antibiotics therapies could overcome this problem to a great extent due to sustained drug release and controllable dose. Here, we designed a kind of alginate injectable hydrogel loaded with minocycline (SA@MC) as a dressing for staphylococcus aureus-infected wound healing. SA@MC hydrogel possessed good injectability and can be injected by syringes. MC participated in the gel formation, causing the microstructure change based on the morphology characterization. The element mapping and FT-IR spectra further confirmed the successful loading of MC in SA hydrogel. Interestingly, MC was released more efficiently in a weakly alkaline condition (pH 7–8) than in a weakly acidic condition (pH 4–6) from SA@MC injectable hydrogel, which means that there is an accelerated release to respond to the weakly alkaline wound microenvironment. Meanwhile, SA@MC injectable hydrogel had high biocompatibility and excellent antibacterial activity due to the sustained release of MC. Further, in vivo experiment results demonstrated that SA@MC injectable hydrogel promoted staphylococcus aureus-infected wound healing efficiently. In summary, the injectable composite hydrogel can serve as an ideal dressing to prevent bacterial infection and promote wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.