Abstract

A facile sol–gel approach combined with a carbon-coating technique via high-temperature thermally decomposing C2H2 has been developed for the synthesis of a Li3V2(PO4)3/C (LVP/C) cathode material employing the biomass of phytic acid as an eco-friendly phosphorus source. The effects of the carbon-coating on the structural, morphological and electrochemical properties of LVP have been investigated. Compared with pristine LVP, the LVP/C composite presents a higher discharge capacity of 127 mA h g−1 at 0.1 C, better rate capability and long-term cyclability in the voltage range of 3.0–4.3 V. Even at a high charge–discharge rate of 5 C, it can still deliver a reversible capacity of 107 mA h g−1 over 400 cycles without obvious fading, demonstrating great potential as a superior cathode material for lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.