Abstract

Wideband 100 kHz–4 GHz power sensors are presented, which are based on sensing the electrostatic force between an RF signal line and a suspended membrane. The electrostatic force, which is proportional to the square of the rms signal voltage and thus to the signal power, results in a displacement of the suspended membrane. This displacement is detected capacitively, allowing the sensing of the signal power with extremely low dissipative losses; therefore the sensor can be placed in a transmission line with negligible disturbance of the signal. Devices have been designed and fabricated successfully by aluminum surface micromachining using photoresist as the sacrificial layer. Optimization of the design with SONNET has resulted in measured return and insertion losses (S11 and S21) better than −30 dB and −0.15 dB, respectively, up to 4 GHz, and a sensitivity of 90 aF mW−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.