Abstract
This paper presents a new fully integrated sensing interface and signal-conditioning application-specific integrated circuit (ASIC) for automotive accelerometers based on an ldquoinjection-nulling switchrdquo (INS) technique. The INS technique simplifies the design of both the switched-capacitor (SC) sensing amplifier and its supporting building blocks without jeopardizing its performance. This is done by counteracting the impact of charge injection and clock-feedthrough effects on sensitivity, resolution, and offset. It also decreases the number of opamps, capacitors, and switches being used. This results in reduction of power consumption, potential switching noise, and noise (sampled thermal noise which increases with the number of SC pairs being used) in the ASIC. A two-chip approach has been adopted in the implementation, with sensing element and ASIC. The built-in trimming circuitry and signal-conditioning blocks, which includes a self-test circuit, are implemented internally to eliminate the need for external components. The experimental results have shown that the sensing system IC has achieved a power consumption of 10 mW (2 mA at 5 V), a maximum noise root spectral density of 11.87 equivalent to rms noise root spectral density of 0.187 at 15.63 Hz, a signal-to-noise dynamic range of 77dB for 500-Hz bandwidth and 74 dB for 1-kHz bandwidth based on 50 g, and a maximum clock noise of 1.562 mV. The die size of the ASIC is 2.8 mm 2.3 mm using a standard 0.6- mum CMOS technology.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.