Abstract

A technique for absolute end-to-end calibration of a fully polarimetric microwave radiometer is presented. The technique is based on the tripolarimetric calibration technique of Gasiewski and Kunkee, but is extended to provide a means of calibrating all four Stokes parameters. The extension is facilitated using a biaxial phase-retarding microwave plate to provide a precisely known fourth Stokes signal from the Gasiewski-Kunkee (GK) linearly polarized standard. The relations needed to determine the Stokes vector produced by the augmented standard are presented, and the effects of nonidealities in the various components are discussed. The application of the extended standard to determining the complete set of radiometer constants (the calibration matrix elements) for the National Oceanic and Atmospheric Administration Polarimetric Scanning Radiometer in a laboratory environment is illustrated. A calibration matrix inversion technique and error analysis are described, as well. The uncertainties associated with practical implementation of the fully polarimetric standard for spaceborne wind vector measurements are discussed relative to error thresholds anticipated for wind vector retrieval from the U.S. National Polar-Orbiting Environmental Satellite System.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.