Acta of Bioengineering and Biomechanics | VOL. 23
Read

A cadaveric study on the rate of strain-dependent behavior of human anterior cruciate ligament

Publication Date Jan 1, 2021

Abstract

Purpose: Failure of anterior cruciate ligament often occurs in young sports personnel hampering their career. Such ACL ruptures are quite prevalent in sports such as soccer during dynamic loading which occurs at more than one rate of loading. In this work, a structural constitutive equation has been used to predict the forces acting on ACL for different rates of loading. Methods: Ligaments with distal femur and proximal tibia were subjected to tensile loading to avoid crushing of tissue ends and slipping at higher rates of strain. Custom designed cylindrical grippers were fabricated to clamp the distal femur and proximal tibial bony sections. To estimate parameters for the model, eighteen fresh cadaveric femur-ACL-tibia complex (FATC) samples were experimented on by pure tensile loading at three orders of rates of strain viz., 0.003, 0.03, and 0.3 s–1. The experimental force-elongation data was used to obtain parameters for De-Vita and Slaughter’s equation. The model was validated with additional tensile experiments. Results: Statistical analysis demonstrated failure stress, Young’s modulus and volumetric strain energy to vary significantly as a function of rate of strain. Midsection failure was observed only in samples tested at 0.03 s–1. Femoral or tibial insertion failure were observed in all other experiments irrespective of rate of strain. Conclusion: Human FATC samples were tensile tested to failure at three rates of strain using custom-designed cylindrical grippers. A structural model was used to model the data for th...

Concepts

Failure Of Anterior Cruciate Ligament Different Rates Of Loading Structural Constitutive Equation Pure Tensile Loading Rate Of Loading Rates Of Strain Anterior Cruciate Ligament Higher Rates Of Strain ACL Ruptures Proximal Tibia

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.