Abstract
We prove a $C^\infty$ version of the Nekhoroshev's estimate on the stability times of the actions in close to integrable Hamiltonian systems. The proof we give is a variant of the original Nekhoroshev's proof and it consists in first conjugating, globally in the phase space, and up to a small remainder, the system to a normal form. Then we perform the geometric part of the proof in the normalized variables. As a result, we obtain a proof which is simpler than the usual ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.