Abstract

Brownian dynamics simulations were used to study the role of electrostatic forces in the interactions of cytochrome f from the cyanobacterium Phormidium laminosum with various cyanobacterial plastocyanins. Both the net charge on the plastocyanin molecule and the charge configuration around H92 (H87 in higher plants) are important in determining the interactions. Those plastocyanins (PCs) with a net charge more negative than −2.0, including those from Synechococcus sp. PCC7942, Synechocystis sp. 6803, and P. laminosum showed very little complex formation. On the other hand, complex formation for those with a net charge more positive than −2.0 (including Nostoc sp. PCC7119 and Prochlorothrix hollandica) as well as Nostoc plastocyanin mutants showed a linear dependence of complex formation upon the net charge on the plastocyanin molecule. Mutation of charged residues on the surface of the PC molecules also affected complex formation. Simulations involving plastocyanin mutants K35A, R93A, and K11A (when present) showed inhibition of complex formation. In contrast, D10A and E17A mutants showed an increase in complex formation. All of these residues surround the H92 (H87 in higher plant plastocyanins) ligand to the copper. An examination of the closest electrostatic contacts shows that these residues interact with D63, E123, R157, D188, and the heme on Phormidium cytochrome f. In the complexes formed, the long axis of the PC molecule lies perpendicular to the long axis of cytochrome f. There is considerable heterogeneity in the orientation of plastocyanin in the complexes formed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.