Abstract

We present the simulation, implementation, and measurement of a broadband terahertz (THz) metamaterial absorber. By stacking 12 metallic bars of varying lengths on three polyimide layers with equal spacing, a broadband absorption spectrum is formed through merging multiple successive resonance peaks. The measured total absorption exceeds 95% from 0.81 to 1.32 THz at the normal incidence and the full width at half maximum is 64% (from 0.76 to 1.48 THz). The absorption decreases with fluctuations as the incident angle increases but remains above 62% even at the incident angle of 40°. The physical explanation to the absorption mechanism is presented and verified by a 9-bar example, which exhibits narrower absorption bandwidth. It is also experimentally demonstrated that the proposed structure is robust against misalignment of each metallic layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call