Abstract

Microwave assisted synthesis has revolutionized chemical synthesis. Small molecules can be built in a fraction of the time required by conventional methods. Green chemistry holds the promise of reducing health and environmental damage. In the past we have focused on cleaning up toxic messes, is a movement to design chemicals that are safer for the environment and human. Microwave assisted reactions in organic chemistry achieve the same by ensuring facilitation of faster reactions under bulk conditions as well as promoting reduction of reaction time. In conventional heating methods oil bath or hot plate are used as a source of heat to a chemical reaction. Microwave irradiation is widely used as a source of heating in chemical synthesis. This article has discussed the different applications of Microwave assisted synthesis of organic compounds most thoroughly by focusing on aspects of speed, reproducibility and scalability. From this review it is clearly identified that independent on the type of organic material, data consistently points out to MW as a novel and powerful tool which has enable synthesis of a number of new compounds and presents the need for future research in this area. The basic mechanisms observed in microwave assisted synthesis are dipolar polarization and conduction. Microwave-assisted synthesis provides clean synthesis with the advantage of enhanced reaction rates, higher yields, greater selectivity, and economic for the synthesis of a large number of organic molecules, have provided the momentum for many chemists to switch from conventional heating method to microwave assisted chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call