Abstract
In this paper, a spectroscopic technology based on a trough-type parabolic condenser is proposed, which effectively utilizes the full spectrum of solar energy for light transmission through optical fibers. The technology comprises four parts, which are concentration, transmission, splitting, and detection, and its application in the field of clean energy was explored. A one-way glass is introduced into the installation as a device for light transmission restriction. The one-way transmittance of one-way glass effectively ensures the transmission direction of sunlight. According to the light simulation results from TracePro software, after the light was transmitted through the one-way glass reflection device, light intensity was guaranteed to meet usage requirements. After being focused by collimating lens and Fresnel lens, the light is introduced into a Roland circle spectroscopic system through an optical fiber. After splitting, various types of light passing through the detection system are introduced into their respective optical fibers for long-distance transmission and use. From the experiments, it was found that through reasonable splitting and the targeted use of different wavelength bands, the effective utilization of the full spectrum of solar energy significantly improved, verifying the feasibility of the device design idea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.