Abstract

The automated valuation of benchmark land price plays an essential role in regulating land demand in Chinese real‐estate market as the big data are currently accumulated rapidly. However, this problem becomes highly challenging due to the multidimension, large volume, and nonlinearity of the land price‐influencing factors. In this paper, an effective data‐driven automated valuation framework is proposed for valuing real estate assets by combining a GIS (geographic information system) and neural network technologies. This framework can automatically obtain the values of spatial factors affecting land price from GIS and generate training set data for training the neural network to identify the complex relationship between all kinds of factors and benchmark land prices. The effectiveness and universality of the framework is verified via the data of benchmark land prices in Wuhan. The framework can be applied for automated benchmark land price valuation in other cities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.