Abstract
This paper presents a box-particle implementation of the standard probability hypothesis density (PHD) filter for extended target tracking, called the extended target box-particle PHD (ET-Box-PHD) filter. The proposed filter can dynamically track multiple extended targets and estimate the unknown number of extended targets, in the presence of clutter measurements, false alarms and missed detections, where the extended targets are described as a Poisson model developed by Gilholm et al. To get the PHD recursion of the ET-Box-PHD filter, a suitable cell likelihood function for one given reliable partition is derived, and the main filter steps are presented along with the necessary box manipulations and approximations. The capabilities and limitations of the proposed ET-Box-PHD filter are illustrated both in linear simulation examples and in nonlinear ones. The simulation results show that the proposed ET-Box-PHD filter can effectively avoid the high number of particles and obviously reduce computational burden, compared to a particle implementation of the standard PHD filter for extended target tracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.