Abstract

This paper presents a semi-analytical method for solving the problem of an isotropic elastic half-plane containing a large number of randomly distributed, non-overlapping, circular holes of arbitrary sizes. The boundary of the half-plane is assumed to be traction-free and a uniform far-field stress acts parallel to that boundary. The boundaries of the holes are assumed to be either traction-free or subjected to constant normal pressure. The analysis is based on solution of complex hypersingular integral equation with the unknown displacements at each circular boundary approximated by a truncated complex Fourier series. A system of linear algebraic equations is obtained by using a Taylor series expansion. The resulting semi-analytical method allows one to calculate the elastic fields everywhere in the half-plane. Several examples available in the literature are re-examined and corrected, and new benchmark examples with multiple holes are included to demonstrate the effectiveness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.