Abstract

A boundary identification problem in inverse heat conduction is studied, based on data from internal measurement of temperature and heat flux. Formulated as a sideways heat conduction equation, a spatial continuation technique is applied to extend the solution to a known boundary condition at the desired boundary position. Recording the positions traversed in the continuation for each time instant yields the boundary position trajectory and hence the solution of the identification problem. A prospective application of the method can be found in the ironmaking blast furnace, where it is desired to monitor the thickness of the accreted refractory wall based on measurement of its internal state. Simulations featuring noisy measurement data demonstrate the feasibility of the identification method for blast furnace wall thickness estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.