Abstract
LetA be a primitiven-square matrix, and letq 0(A) be the smallestq such thatA q ,A q +1 have a common nonzero entry. The following general bound forq 0(A) is proved: $$q_0 (A) \leqq (n - 2)(n - 3)/2, n > 4.$$ This bound is best possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.