Abstract
Spinal cord injury (SCI) survivors generally retain residual motor and sensory functions, which provide them with the means to control assistive devices. A body-machine interface (BoMI) establishes a mapping from these residual body movements to control commands for an external device. In this study, we designed a BoMI to smooth the way for operating computers, powered wheelchairs and other assistive technologies after cervical spinal cord injuries. The interface design included a comprehensive training paradigm with a range of diverse functional activities to enhance motor learning and retention. Two groups of SCI survivors and healthy control subjects participated in the study. The results indicate the effectiveness of the developed system as an alternative pathway for individuals with motor disabilities to control assistive devices while engaging in functional motor activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.