Abstract
Social Internet of Vehicles (SIoV) falls under the umbrella of social Internet of Things (IoT), where vehicles are socially connected to other vehicles and roadside units that can reliably share information and services with other social entities by leveraging the capabilities of 5G technology, which brings new opportunities and challenges, e.g., collaborative power trading can address the mileage anxiety of electric vehicles. However, it relies on a trusted central party for scheduling, which introduces performance bottlenecks and cannot be set up in a distributed network, in addition, the lack of transparency in state-of-the-art Vehicle-to-Vehicle (V2V) power trading schemes can introduce further trust issues. In this paper, we propose a blockchain-based trustworthy collaborative power trading scheme for 5G-enabled social vehicular networks that uses a distributed market mechanism to introduce trusted power trading and avoids the dependence on a centralized dispatch center. Based on the game theory, we design the pricing and trading matching mechanism for V2V power trading to obtain maximum social welfare. We use blockchain to record power trading data for trusted pricing and use smart contracts for transaction matching. The simulation results verify the effectiveness of the proposed scheme in improving social welfare and reducing the load on the grid.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have