Abstract
Films-based bionanocomposites have gained a great importance in food plastic packaging because they are eco-friendly materials and have the potential to improve food protection, while limiting the accumulation of synthetic plastics on the planet. In this paper, biofilms were prepared using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) reinforced with Zinc oxide nanoparticles (ZnO-NPs) to develop new bionanocomposite materials intended for food packaging. The samples were fabricated using first solvent casting method followed by melt compounding at various loading rates, i.e., 1.5, 3 and 6 wt%. The obtained results showed that the incorporation of ZnO-NPs to PHBHHx at 3 wt% leads to higher crystallinity, improved mechanical properties and antimicrobial activity, compared with neat polymer and other bionanocomposites. This was attributed to the finer and homogeneous nanofiller dispersion in the polymer matrix evidenced by scanning electron microscopy analysis. Whereas at 6 wt%, the bionanocomposite sample exhibited low mechanical properties due to the formation of ZnO-NPs aggregates. In view of the obtained results, the study highlights the potential of using the PHBHHx/ZnO-NPs bionanocomposite at 3 wt% in food packaging without any prior filler treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.