Abstract
Olecranon osteotomies are frequently used to expose distal humeral intraarticular fractures. The step-cut olecranon osteotomy (SCOOT) is an augmented version of the oblique olecranon osteotomy, which has recently been evaluated biomechanically with tension band wiring (TBW) fixation. However, complications with TBW are common. In this study, we, therefore, compared the mean load to failure of TBW with compression screws for SCOOT fixation. We hypothesized a higher load to failure for the compression screw group. We performed a SCOOT on 36 Sawbones. Eighteen were fixed with TBW, and another 18 with two compression screws. The humeroulnar joint was simulated using an established test setup, which allows the application of triceps traction force through a tendon model to the ulna, while the humeroulnar joint is in a fixed position. Eight models of each fixation group were tested at 20°, and eight at 70° of flexion by isometrical loading until failure, which was defined as either a complete fracture or gap formation of more than 2 mm at the osteotomy site. At 20° of flexion, mean load to failure was similar between the TBW group (1360 ± 238 N) and the compression screw group (1401 ± 261 N) (P= .88). Also, at 70° of flexion, the mean load to failure wassimilar between the TBW group (1398 ± 215 N) and the compression screw group (1614 ± 427 N) (P= .28). SCOOTs fixed with TBW and compression screws showed similar loads to failure. A SCOOT fixed with compression screws might be a valuable alternative for surgeons when treating intraarticular distal humeral fractures. However, future invivo studies are necessary to confirm our results in a clinical setting.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have