Abstract
Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have