Abstract

This paper describes the results of an experimental study aimed at evaluating the biomechanical effects of working in a spatially restricted environment on manual lifting tasks. The main objective of the study is to estimate the biomechanical loading (in terms of peak compression and shear forces) on the lumbar spine for the selected combinations of limited headroom heights and twisting angles. A three-dimensional dynamic biomechanical model was utilized to assess peak compression and shear forces at the L5/S1 lum-bosacral joint. The results indicated that by reducing the headroom height, the participants were forced to stand with their trunks fully flexed forward which, by increasing the mechanical disadvantage at the lumbosacral disc, increased the compression forces. Both compression and shear forces were affected by the increase in twisting angle. The greater the twisting angle, the higher the compression and shear forces. Regression models were developed and validated, which demonstrated high accuracy of predicting the psycho-physical and biomechanical lifting capacities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.