Abstract

HypothesisIn this original work, we aim to control both the surface wetting and fluorescence properties of extremely ordered and porous conducting polymer nanotubes prepared by soft template electropolymerization and post-grafting. For reaching this aim, various substituents of different hydrophobicity and fluorescence were post-grafted and the post-grafting yields were evaluated by surface analyses. We show that the used polymer is already fluorescent before post-grafting while the post-grafting yield and as a consequence the surface hydrophobicity highly depend on the substituent. ExperimentsHere, we have chosen to chemically grafting various fluorinated and aromatic substituents using a post-grafting in order to keep the same surface topography. Flat conducting polymer surfaces with similar properties have been also prepared for determining the surface energy with the Owens-Wendt equation and estimating the post-grafting yield by X-ray Photoemission Spectroscopy (XPS) and Time of Flight Secondary Emission Spectrometry (ToF-SIMS). For example, using fluorinated chains of various length (C4F9, C6F13 and C8F17), it is demonstrated that the surface hydrophobicity and oleophobicity do not increase with the fluorinated chain length due to the different post-grafting yields and because of the presence of nanoroughness after post-grafting. FindingsThese surfaces have high apparent water contact angle up to 130.5° but also strong water adhesion, comparable to rose petal effect even if there are no nanotubes on petal surface. XPS and ToF-SIMS analyses provided a detailed characterisation of the surface chemistry with a qualitative classification of the grafted surfaces (F6 > F4 > F8). SEM analysis shows that grafting does not alter the surface morphology. Finally, fluorescence analyses show that the polymer surfaces before post-treatment are already nicely fluorescent. Although the main goal of this paper was and is to understand the role of surface chemistry in tailoring the wetting properties of these surfaces rather than provide specific application examples, we believe that the obtained results can help the development of specific nanostructured materials for potential applications in liquid transport, or in stimuli responsive antimicrobial surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.