Abstract

The ecosite unit in Ontario’s boreal forest ecological land classification system is a polygon of common vegetation type and soil conditions intended to provide a standardized provincial framework to inform meso-scale forestry and planning applications. To determine whether the physical factors used for ecosite classification relate to patterns in ecological function over finer spatial scales, we examined 14 soil properties in replicate boreal forest plots representing eight mineral soil ecosite classes and three organic soil ecosite classes in the Hearst Forest. Despite large differences in vegetation composition, we found few statistically significant differences in properties when compared for individual classes or for more general groupings based on vegetation type and soil texture or expected fertility status. However, some properties (soil organic carbon, total nitrogen, and C:N ratio) were approaching significance in the 0–10 cm depth increment, and there were distinct differences between organic soil and mineral soil sites. Overall, these results suggest few explicit links between ecosystem function and ecosite class at this scale of measurement, highlighting the potential importance of non-steady-state relationships between vegetation species and soil properties in disturbed forests and the potential need for finer-scale characterization to capture patterns in ecosystem function.

Highlights

  • Sustainable forest management requires scientifically informed planning to balance multiple, and often competing, environmental, social, and economic factors

  • The objective of this work was to explore the relationships between ecosite class and a wide range of factors related to ecosystem function in boreal forest stands as defined by Ontario‘s boreal forest ecosite classification system

  • The main purpose of this study was to determine how key soil properties indicative of ecosystem function varied among different forest ecosite types at Hearst Forest

Read more

Summary

Introduction

Sustainable forest management requires scientifically informed planning to balance multiple, and often competing, environmental, social, and economic factors. ELC systems are hierarchical frameworks that subdivide regional landscapes of common climate, geology, and vegetation into increasingly smaller, homogenous units based on the interrelationships between features such as physiography, soils, and vegetation [1]. Many regional permutations of ELC exist, yet most share a common goal of providing a way to spatially interpret the biosphere as subsidiary ecosystems consisting of interacting soils, biota, landforms, and climate [2]. The hierarchical nature of these systems provides a tool that is adaptable and appropriate to the variety of information requirements at various scales needed by environmental planners and resource managers [3]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call