Abstract

In this paper, we study a mathematical bio-economic model of a fishery with varying price. The three dimensional model describes the time evolution of the resource, the fishing effort and the price. The model is original because it considers a nonlinear harvesting function assumed to depend upon stock size and fishing effort with a saturation effect with respect to the resource as well as a price equation depending on demand and supply which is in addition proportional to price. Assuming that the price varies at a fast time scale, we are able to use ”aggregation of variables methods” in order to reduce the model in a two dimensional model at a slow time scale. This aggregated (reduced) model is analyzed. Several numerical simulations of the model are performed to substantiate our analytical findings. The existence of nonlinear harvesting makes the dynamics of the model more complicated, including multiple equilibria, bi-stability and limit cycle. Such large amplitude cycle variations are not desirable because they generate periods of overfishing at periods of very low activity. We then study the effects of marine reserves on the dynamics of the fishery, showing that for an adequate number of small reserves, limit cycle oscillations are switched off.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call