Abstract
Chronic wounds represent a formidable global healthcare challenge due to the bacteria infections and uncontrollable inflammation responses, while developing wound healing materials capable of resolving these issues remains a challenge. In this study, we integrated xyloglucan (XG) with Pluronic F127 diacrylate (F127DA)to develop a composite hydrogel for wound healing, where the XG introduced anti-inflammation and anti-bacterial properties to the construct, and F127DA provides the photocurable properties essential for hydrogel formation and robust mechanical characteristics to achieve physical strength that matches tissue regeneration. The material characterizations suggested that XG/F127DA hydrogels had great biostability, blood compatibility and antibacterial effects, which was suitable to be used as a wound healing material. The in vitro analysis by culturing L929 fibroblasts on the hydrogel surface demonstrated that the inclusion of XG could promote the cellular proliferation rate, migration rate, and re-epithelialization-related marker expression, while downregulate the inflammation process. The XG/F127DA hydrogel was further used for the full-thickness skin wound healing test on mice, where the inclusion of XG significantly increased the wound closure rate through reducing the inflammation responses, and promote re-epithelialization and angiogenesis. These results indicated that XG/F127DA hydrogel has great potential to be used for wound healing in future clinical translation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have