Abstract
Superconducting neural networks hold significant potential for future applications such as natural language processing and image recognition. To this end, we propose a binary neural computing unit implemented using a hybrid circuit of cryogenic CMOS and superconducting technologies. It offers two main advantages: firstly, we utilize current-mode computations for neural unit weight calculations, significantly reducing the unit’s footprint and enabling the potential for higher integration in the future. Secondly, all computations are performed in a low-temperature environment, which implies the possibility of on-chip learning in superconducting neural networks and the potential for achieving faster training rates in the future. We fabricated the chip using Nb 1 kA cm−2 process (1KP) technology and experimentally verified the correctness of the circuit logic. The margins for various control parameters of the circuit are approximately around 30%, and the superconducting circuit power consumption is estimated to be around 4 microwatts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have