Abstract

In this paper, we address an instance of the dynamic capacitated multi-item lot-sizing problem (CMILSP) typically encountered in steel rolling mills. Production planning is carried out at the master production schedule level, where the various end items lot sizes are determined such that the total cost is minimised. Through incorporating the various technological constraints associated with the manufacturing process, the integrated production–inventory problem is formulated as a mixed integer bilinear program (MIBLP). Typically, such class of mathematical models is solved via linearisation techniques which transform the model to an equivalent MILP (mixed integer linear program) at the expense of increased model dimensionality. This paper presents an alternative branch-and-bound based algorithm that exploits the special structure of the mathematical model to minimise the number of branches and obtain the bound at each node. The performance of our algorithm is benchmarked against that of a classical linearisation technique for several problem instances and the obtained results are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.