Abstract

Alginate lyases can depolymerize alginate to oligomers with potential applications in many fields. Here a new alginate lyase, namely AlgL6, was characterized from Microbulbifer sp. ALW1, phylogenetically classified into the polysaccharide lyase family 6 (PL6). The recombinant alginate lyase AlgL6 exerted enzymatic activities towards polymannuronate, polyguluronate, and sodium alginate in an exolytic manner. AlgL6 had an optimum temperature of 35 °C and good stability at 30 °C or below. Its optimum pH was 8.0, and it had good stability over the pH range of 5.0–9.0. AlgL6 exhibited excellent halo-stability against Na+, and its activity can be increased up to about 1.8 times by 0.5 M NaCl. AlgL6 also showed strong stability in the presence of some nonionic detergents such as Tween 20 and Tween 80. The degradation products of sodium alginate by AlgL6 exhibited more effective antioxidant activities than the undigested polysaccharides. Structure analysis illustrated the catalytic mechanism defined by the coordination of the acid/base residues Arg269 and Lys248 of AlgL6. The replacement of Ca2+-interacting amino acid residues in AlgL6 and depletion of Ca2+ suggested the involvement of Ca2+ in the enzyme’s catalytic activity. These properties of AlgL6 supply support to its industrial application for development of alginate bioresource.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call