Abstract
A novel bidirectional magnetic microactuator using electroplated permanent magnet arrays has been designed, fabricated and characterized. To realize a bidirectional microactuator, CoNiMnP-based permanent magnet arrays have been fabricated first on a silicon cantilever beam using a new electroplating technique. In the fabricated permanent magnets, the vertical coercivity and retentivity have been achieved up to 87.6 kA/m (1100 Oe) and 190 mT (1900 G), respectively by applying magnetic field during electroplating. A prototype bidirectional magnetic microactuator has been realized by integrating an electromagnet with a silicon cantilever beam, which has permanent magnet arrays on its tip. By applying a do current of 100 mA and altering its polarity, bidirectional motion on the tip of the cantilever beam has been successfully achieved in the deflection range of /spl plusmn/80 /spl mu/m.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have