Abstract
In this paper, we study the parkinson oscillation mechanism in a computational model by bifurcation analysis and numerical simulation. Oscillatory activities can be induced by abnormal coupling weights and delays. The bidirectional Hopf bifurcation phenomena are found in simulations, which can uniformly explain the oscillation mechanism in this model. The Hopf1 represents the transition between the low firing rate stable state (SS) and oscillation state (OS), the Hopf2 represents the transition between the high firing rate stable state (HSS) and the OS, the mechanisms of them are different. The Hopf1 and Hopf2 bifurcations both show that when the state transfers from the stable region to the oscillation region, oscillatory activities originate from the beta frequency band or the gamma frequency band. We find that the changing trends of the frequency (DF) and oscillation amplitude (OSAM) are contrary in many cases. The effect of the delay in inhibitory pathways is greater than that of in excitatory pathways, and appropriate delays improve the discharge activation level (DAL) of the system. In all, we infer that oscillations can be induced by the follow factors: 1. Improvement of the DAL of the globus pallidus externa (GPe); 2. Reduce the DAL of the GPe from the HSS or the discharge saturation state; 3. The GPe can also resonate with the subthalamic nucleus (STN).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have