Abstract
We use the rational tableaux introduced by Stembridge to give a bideterminant basis for a normal reductive monoid and for its variety of noninvertible elements. We also obtain a bideterminant basis for the full coordinate ring of the general linear group and for all its truncations with respect to saturated sets. Finally, we deduce an alternative proof of the double centraliser theorem for the rational Schur algebra and the walled Brauer algebra over an arbitrary infinite base field which was first obtained by Dipper, Doty and Stoll.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.