Abstract
This paper addresses a problem arising in the coordination between two consecutive departments of a production system, where parts are processed in batches, and each batch is characterized by two distinct attributes. Due to the lack of interstage buffering between the two stages, these departments have to follow the same batch sequence. In the first department, a setup occurs every time the first attribute of a new batch is different from the one of the previous batch. In the downstream department, there is a setup when the second attribute changes in two consecutive batches. The problem consists in finding a batch sequence optimizing the number of setups paid by each department. This case results in a particular bi-objective combinatorial optimization problem. We present a geometrical characterization for the feasible solution set of the problem, and we propose three effective heuristics, as shown by an extensive experimental campaign. The proposed approach can be also used to solve a class of single-objective problems, in which setup costs in the two departments are general increasing functions of the number of setups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.