Abstract

ObjectivesGuided bone regeneration (GBR) is a well-established method for repairing hard tissue deficiency in reconstructive dentistry. The aim of this study was to investigate the barrier function, osteogenic activity and immunomodulatory ability of a novel bi-layered asymmetric membrane loaded with demineralized dentin matrix (DDM). MethodsDDM particles were harvested from healthy, caries-free permanent teeth. Electrospinning technique was utilized to prepare bi-layered DDM-loaded poly(lactic-co-glycolic acid) (PLGA)/poly(lactic acid) (PLA) membranes (abbreviated as DPP bilayer membranes). We analyzed the membranes' surface properties, cytocompatibility and barrier function, and evaluated their osteogenic activity in vitro. In addition, its effects on the osteogenic immune microenvironment were also investigated. ResultsSynthetic DPP bilayer membranes presented suitable surface characteristics and satisfactory cytocompatibility. Transwell assays showed significant fewer migrated cells by the DPP bilayer membranes compared with blank control, with or without in vitro degradation (all P < 0.001). In vitro experiments indicated that our product elevated messenger ribonucleic acid (mRNA) expression levels of osteogenic genes alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and runt-related transcription factor 2 (Runx2). Among all groups, 20% DPP bilayer membrane displayed highest ALP activity (P < 0.001). Furthermore, DPP bilayer membranes enhanced the mRNA expression of M2 macrophage markers and increased the proportion of CD206+ M2 macrophages by 100% (20% DPP: P < 0.001; 30% DPP: P < 0.001; 40% DPP: P < 0.05), thus exerting an inflammation suppressive effect. ConclusionsDPP bilayer membranes exhibited notable biological safety and osteogenic activity in vitro, and have potential as a prospective candidate for GBR approach in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.