Abstract

In elasticity, microstructure-related deviations may be modeled by strain gradient elasticity. For so-called metamaterials, different implementations are possible for solving strain gradient elasticity problems numerically. Analytical solutions of simple problems are used to verify the numerical approach. We demonstrate such a case in a two-dimensional continuum as a benchmark case for computations. As strain gradient enforces higher regularity conditions in displacements, in the finite element method (FEM), the use of standard elements is often seen as inadequate. For such piecewise or elementwise continuous elements, we examine a possible remedy to correctly simulate strain gradient elasticity problems by implementing two techniques. First, we enforce continuity of displacement gradient across elements; second, we employ a mixed finite element method where displacement and its gradient are solved both as unknowns. The results show the pros and cons of each numerical technique. All methods converge monotonically, but the mixed method is more reliable than the other one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.