Abstract

Deep reinforcement learning-based mobile robot navigation has attracted some recent interest. In the single-agent case, a robot can learn to navigate autonomously without a map of the environment. In the multi-agent case, robots can learn to avoid collisions with each other. In this work, we propose a behavior-based mobile robot navigation method which directly maps the raw sensor data and goal information to the control command. The learned navigation policy can be applied in both single-agent and multi-agent scenarios. Two basic navigation behaviors are considered in our method, which are goal reaching and collision avoidance. The two behaviors are fused based on the risk-level estimation of the current state. The navigation task is decomposed using the behavior-based framework, which is capable of reducing the complexity of the learning process. The simulations and real-world experiments demonstrate that the proposed method can enable the collision-free autonomous navigation of multiple mobile robots in unknown environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call