Abstract

Free vibration of a beam with multiple arbitrarily placed lateral viscous dampers is investigated to gain insight into the intrinsic dynamic features of non-proportional damped systems. In terms of virtual boundary condition method, complex modes of a damper-beam system are achieved, and the solution is also suitable for the beams that have different boundary conditions. The features of the wave numbers satisfying the frequency equation were discussed in theory. The orthogonality analysis conducted in this paper provides two orthogonality conditions for complex modes. Pseudoundamped natural frequencies, damping ratios and complex modes are surveyed via numerical study. The analysis on the evolution of complex modes shows that the increasing damping would lead to over damped modes, and the mode shape that corresponds to the small one of a pair of real-valued natural frequencies is close to the static deformation shape of a beam subjected to static forces located at the positions of the dampers. For the rest modes that would never be over damped with increasing damping, the mode shapes and corresponding psuedoundamped natural frequencies will converge to that of a beam with rolling supports located at where dampers are placed. The exact solution of free vibration of a multiple-span beam is presented in addition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.